Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Pharmacol ; 35(2-3): 114-121, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451023

RESUMO

We hypothesized that opioid receptor antagonists would inhibit motivated behavior produced by a natural reward. To evaluate motivated responses to a natural reward, mice were given access to running wheels for 71.5 h in a multi-configuration testing apparatus. In addition to a running wheel activity, locomotor activity (outside of the wheel), food and water intake, and access to a food container were measured in the apparatus. Mice were also tested separately for novel-object exploration to investigate whether naloxone affects behavior unrelated to natural reward. In untreated mice wheel running increased from day 1 to day 3. The selective µ-opioid receptor antagonist ß-funaltrexamine (ß-FNA) (5 mg/kg) slightly decreased wheel running, but did not affect the increase in wheel running from day 1 to day 3. The non-selective opioid receptor antagonist naloxone produced a greater reduction in wheel running than ß-FNA and eliminated the increase in wheel running that occurred over time in the other groups. Analysis of food access, locomotor behavior, and behavior in the novel-object test suggested that the reduction in wheel running was selective for this highly reinforcing behavior. These results indicate that opioid receptor antagonism reduces responses to the natural rewarding effects of wheel running and that these effects involve multiple opioid receptors since the non-selective opioid receptor antagonist had greater effects than the selective µ-opioid receptor antagonist. It is possible that at the doses employed, other receptor systems than opioid receptors might be involved, at least in part, in the effect of naloxone and ß-FNA.


Assuntos
Atividade Motora , Antagonistas de Entorpecentes , Animais , Camundongos , Antagonistas de Entorpecentes/farmacologia , Motivação , Naloxona/farmacologia , Receptores Opioides
2.
Int J Radiat Biol ; 100(1): 131-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37555698

RESUMO

PURPOSE: Zebrafish, a small fish model, exhibits a multipotent ability for retinal regeneration after damage throughout its lifetime. Compared with zebrafish, birds and mammals exhibit such a regenerative capacity only during the embryonic period, and this capacity decreases with age. In medaka, another small fish model that has also been used extensively in biological research, the retina's inner nuclear layer (INL) failed to regenerate after injury in the hatchling at eight days postfertilization (dpf). We characterized the regenerative process of the embryonic retina when the retinal injury occurred during the early embryonic period in medaka. METHODS: We employed a 10 Gy dose of gamma-ray irradiation to initiate retinal injury in medaka embryos at 3 dpf and performed histopathological analyses up to 21 dpf. RESULTS: One day after irradiation, numerous apoptotic neurons were observed in the INL; however, these neurons were rarely observed in the ciliary marginal zone and the photoreceptor layer. Numerous pyknotic cells were clustered in the irradiated retina until two days after irradiation. These disappeared four days after irradiation, but the abnormal bridging structures between the INL and ganglion cell layer (GCL) were present until 11 days after irradiation, and the neural layers were completely regenerated 18 days after irradiation. After gamma-ray irradiation, the spindle-like Müller glial cells in the INL became rounder but did not lose their ability to express SOX2. CONCLUSIONS: Irradiated retina at 3 dpf of medaka embryos could be completely regenerated at 18 days after irradiation (21 dpf), although the abnormal layer structures bridging the INL and GCL were transiently formed in the retinas of all the irradiated embryos. Four days after irradiation, embryonic medaka Müller glia were reduced in number but maintained SOX2 expression as in nonirradiated embryos. This finding contrasts with previous reports that 8 dpf medaka larvae could not fully regenerate damaged retinas because of loss of SOX2 expression.


Assuntos
Oryzias , Animais , Peixe-Zebra , Retina/lesões , Retina/patologia , Neuroglia , Desenvolvimento Embrionário , Mamíferos
3.
Heliyon ; 9(12): e22784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38090003

RESUMO

Kamishoyosan (KSS) and Kamikihito (KKT) have been traditionally prescribed for neuropsychiatric symptoms in Japan. However, the molecular mechanism of its effect is not elucidated enough. On the other hand, it has been reported that lipopolysaccharide derived from Porphyromonas gingivalis (P. g LPS) is involved not only in periodontal disease but also in the systemic diseases such as psychiatric disorders via neuroinflammation. Here, we investigated the molecular mechanism of KSS and KKT treatment by LPS-induced neuropathy using PC-12 cells. When P. g LPS was administrated during the NGF treatment, the KCC2 expression was decreased in PC-12 cells. P. g LPS treatment also decreased the WNK and phospho SPAK (pSPAK) expression and enhanced GSK-3ß expression that negatively regulates WNK-SPAK signaling. Moreover, when KSS or KKT was administrated before P. g LPS treatment, the decrease of KCC2, WNK and pSPAK was rescued. KSS and KKT treatment also rescued the enhancement of GSK3ß expression by P. g LPS treatment. Furthermore, KSS, KKT and/or oxytocin could rescue behavioral abnormalities caused by P. g LPS treatment by animal experiments. These effects were not shown in the Goreisan treatment, which has been reported to act on the central nervous system. These results indicate that KSS and KKT are candidates for therapeutic agents for neural dysfunction.

4.
Jpn Dent Sci Rev ; 59: 431-438, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38022385

RESUMO

Patients with neurological diseases, such as schizophrenia, tend to show low K+-Cl- co-transporter 2 (KCC2) levels in the brain. The cause of these diseases has been associated with stress and neuroinflammation. However, since the pathogenesis of these diseases is not yet fully investigated, drug therapy is still limited to symptomatic therapy. Targeting KCC2, which is mainly expressed in the brain, seems to be an appropriate approach in the treatment of these diseases. In this review, we aimed to discuss about stress and inflammation, KCC2 and Gamma-aminobutyric acid (GABA) function, diseases which decrease the KCC2 levels in the brain, factors that regulate KCC2 activity, and the possibility to overcome neuronal dysfunction targeting KCC2. We also aimed to discuss the relationships between neurological diseases and LPS caused by Porphyromonas gingivalis (P. g), which is a type of oral bacterium. Clinical trials on oxytocin, sirtuin 1 (SIRT1) activator, and transient receptor potential cation channel subfamily V Member 1 activator have been conducted to develop effective treatment methods. We believe that KCC2 modulators that regulate mitochondria, such as oxytocin, glycogen synthase kinase 3ß (GSK3ß), and SIRT1, can be potential targets for neurological diseases.

5.
Data Brief ; 48: 109231, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383814

RESUMO

The Aggressive Response Meter (ARM) has been validated for measuring emotional (psychotic) aggression triggered by mental irritation in mice. In the present article, we newly developed a device, pARM (PowerLab-compatible type ARM). We collected on the aggressive biting behavior (ABB) intensity and ABB frequency of 20 male and female mice of ddY strain studied over a period of 6 days by using pARM and the former ARM. We calculated Pearson's correlation between the values of pARM and those of ARM. The accumulated data can be referred as a basis for demonstrating the consistence of pARM and the former ARM, and used in future research to augment the understanding of stress-induced emotional aggression in mice.

6.
Neurochem Res ; 48(7): 2230-2240, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36907972

RESUMO

We investigated morphine-induced Straub's tail reaction (STR) in mice pretreated with or without glycogen synthase kinase-3 (GSK-3) inhibitors (SB216763 and AR-A014418) by using a newly modified, infrared beam sensor-based automated apparatus. Mice treated with a single injection of morphine (30 mg/kg, i.p.) showed a significant STR with a plateau level at a time point of 20 min after morphine challenge. Pretreatment of mice with SB216763 (5 mg/kg, s.c.) or AR-A014418 (3 mg/kg, i.p.) significantly inhibited morphine-induced STR and attenuated the duration of STR in a dose-dependent fashion. In the striatum and the nucleus accumbens, expression of pGSK-3ßTyr216 but not GSK3ß or pGSK-3ßSer9 was largely but not significantly reduced after treatment with SB216763 (5 mg/kg, s.c.) in combination with/without morphine, indicating that the inhibitory effect of GSK-3 inhibitors on morphine-induced STR and hyperlocomotion might not depend on the direct blockade of GSK-3ß function. In constipated mice after morphine challenge (30 mg/kg), the effect of GSK-3 inhibitors on gastrointestinal transit was examined to reveal whether the action of GSK-3 inhibitors on morphine effects was central and/or peripheral. Pretreatment with SB216763 (5 mg/kg) did not block constipation in morphine-injected mice. The mechanism of action seems to be central but not peripheral, although the underlying subcellular mechanism of GSK-3 inhibitors is not clear. Our measurement system is a useful tool for investigating the excitatory effects of morphine in experimental animals.


Assuntos
Quinase 3 da Glicogênio Sintase , Morfina , Camundongos , Animais , Morfina/farmacologia , Morfina/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Cauda
7.
PLoS One ; 17(12): e0273064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584168

RESUMO

Small teleosts have recently been established as models of human diseases. However, measuring heart rate by electrocardiography is highly invasive for small fish and not widely used. The physiological nature and function of vertebrate autonomic nervous system (ANS) modulation of the heart has traditionally been investigated in larvae, transparent but with an immature ANS, or in anesthetized adults, whose ANS activity may possibly be disturbed under anesthesia. Here, we defined the frequency characteristics of heart rate variability (HRV) modulated by the ANS from observations of heart movement in high-speed movie images and changes in ANS regulation under environmental stimulation in unanesthetized adult medaka (Oryzias latipes). The HRV was significantly reduced by atropine (1 mM) in the 0.25-0.65 Hz and by propranolol (100 µM) at 0.65-1.25 Hz range, suggesting that HRV in adult medaka is modulated by both the parasympathetic and sympathetic nervous systems within these frequency ranges. Such modulations of HRV by the ANS in adult medaka were remarkably suppressed under anesthesia and continuous exposure to light suppressed HRV only in the 0.25-0.65 Hz range, indicating parasympathetic withdrawal. Furthermore, pre-hatching embryos did not show HRV and the power of HRV developed as fish grew. These results strongly suggest that ANS modulation of the heart in adult medaka is frequency-dependent phenomenon, and that the impact of long-term environmental stimuli on ANS activities, in addition to development of ANS activities, can be precisely evaluated in medaka using the presented method.


Assuntos
Oryzias , Adulto , Animais , Humanos , Frequência Cardíaca/fisiologia , Sistema Nervoso Autônomo , Eletrocardiografia , Sistema Nervoso Simpático
8.
Biochem Biophys Res Commun ; 612: 1-7, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500436

RESUMO

Cranial radiation therapy (CRT) is an effective treatment for brain tumors; however, it also causes brain injuries. The pediatric brain is considered especially vulnerable compared to the adult brain; thus, brain injuries caused by CRT may severely affect their quality of life. In this study, we determined the neuroprotective effects of nasal oxytocin administration following cranial radiation in mice. We investigated the cognitive behavior of mice (novel object recognition test and novel object location test), phosphorylated histone H2AX (γ-H2AX) and K+-Cl- transporter (KCC2) by immunohistochemical analysis of the hippocampal sections, and neuronal cells by immunocytochemistry after radiation and oxytocin administration. We found that the number of γ-H2AX foci was increased, and the surface signal intensity of KCC2 immunofluorescence was decreased in cells that were irradiated with X-rays (1.5 Gy, for three consecutive days) compared with cells that were not. Furthermore, using MQAE, we found that the intracellular chloride ion concentration was downregulated in oxytocin-treated cells by increasing surface KCC2 expression. These results indicate that nasal oxytocin administration after cranial irradiation attenuates cognitive dysfunction in mice and exerts multifaceted neuroprotective effects on DNA damage and maintains chloride ion concentration in neuronal cells.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Fármacos Neuroprotetores , Simportadores , Animais , Lesões Encefálicas/metabolismo , Cloretos/metabolismo , Disfunção Cognitiva/metabolismo , Irradiação Craniana/métodos , Dano ao DNA , Hipocampo/metabolismo , Humanos , Camundongos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Ocitocina/metabolismo , Ocitocina/farmacologia , Qualidade de Vida , Simportadores/metabolismo
9.
Curr Drug Res Rev ; 14(3): 162-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431009

RESUMO

BACKGROUND: Methamphetamine (METH) is classified as a Schedule II stimulant drug under the United Nations Convention on Psychotropic Substances of 1971. METH and other amphetamine analogues (AMPHs) are powerful addictive drugs. Treatments are needed to treat the symptoms of METH addiction, chronic METH use, and acute METH overdose. No effective treatment for METH abuse has been established because alterations of brain functions under the excessive intake of abused drug intake are largely irreversible due in part to brain damage that occurs in the course of chronic METH use. OBJECTIVE: Modulation of brain histamine neurotransmission is involved in several neuropsychiatric disorders, including substance use disorders. This review discusses the possible mechanisms underlying the therapeutic effects of histamine H3 receptor antagonists on symptoms of methamphetamine abuse. CONCLUSION: Treatment of mice with centrally acting histamine H3 receptor antagonists increases hypothalamic histamine contents and reduces high-dose METH effects while potentiating lowdose effects via histamine H3 receptors that bind released histamine. On the basis of experimental evidence, it is hypothesized that histamine H3 receptors may be an effective target for the treatment METH use disorder or other adverse effects of chronic METH use.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Estimulantes do Sistema Nervoso Central , Metanfetamina , Animais , Camundongos , Estimulantes do Sistema Nervoso Central/farmacologia , Histamina , Metanfetamina/farmacologia , Receptores Histamínicos , Antagonistas dos Receptores Histamínicos H3
10.
Peptides ; 150: 170734, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34974081

RESUMO

Inflammation, especially neuroinflammation, which is caused by stress, leads to central nervous system (CNS) dysfunction. Because lipopolysaccharides (LPSs) cause neuroinflammation, we investigated the effect of LPSs to CNS. In PC-12 cells, LPSs derived from oral bacteria reduced the expression of KCC2, a Cl- transporter. LPS derived from P. gingivalis (P. g) administered to rat primary cultured cells also reduced the KCC2 expression. However, LPSs derived from E. coli did not reduce the KCC2 expression. LPS treatment activated TLR4, IL-1ß, and REST gene expressions, which led to KCC2 inactivation in PC-12 cells. The mechanism of KCC2 has been shown to play an important role in brain maturation, function (such as the GABA switch), and behavioral problems, we investigated the GABA function. We found that the GABA function was changed from inhibitory to excitatory by the LPS derived from P. g treatment. We demonstrated that the GSK3ß also involved in the KCC2 reduction by LPS treatment. We show that oxytocin rescued the reduction in KCC2 expression caused by LPSs by inhibiting GSK3ß signaling but vasopressin could not. Considered together, our results indicate that the LPSs from oral bacteria but not the LPS from E. coli increase the risk for brain disorders and oxytocin might be a candidate to overcome the abnormal behavior caused by brain disorders such as psychiatric disorders.


Assuntos
Encefalopatias , Simportadores , Animais , Células Cultivadas , Escherichia coli/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Ocitocina/metabolismo , Ocitocina/farmacologia , Células PC12 , Ratos , Simportadores/genética , Simportadores/metabolismo , Ácido gama-Aminobutírico
11.
Life Sci ; 286: 120051, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666039

RESUMO

AIMS: To overcome radioresistant cancer cells, clinically relevant radioresistant (CRR) cells were established. To maintain their radioresistance, CRR cells were exposed 2 Gy/day of X-rays daily (maintenance irradiation: MI). To understand whether the radioresistance induced by X-rays was reversible or irreversible, the difference between CRR cells and those without MI for a year (CRR-NoIR cells) was investigated by the mitochondrial function as an index. MAIN METHODS: Radiation sensitivity was determined by modified high density survival assay. Mitochondrial membrane potential (Δψm) was determined by 5,5',6,6'-tetrachloro-1,1', tetraethylbenzimidazolocarbo-cyanine iodide (JC-1) staining. Rapid Glucose-Galactose assay was performed to determine the shift in their energy metabolism from aerobic glycolysis to oxidative phosphorylation in CRR cells. Involvement of prohibitin-1 (PHB1) in Δψm was evaluated by knockdown of PHB1 gene followed by real-time PCR. KEY FINDINGS: CRR cells that exhibited resistant to 2 Gy/day X-ray lost their radioresistance after more than one year of culture without MI for a year. In addition, CRR cells lost their radioresistance when the mitochondria were activated by galactose. Furthermore, Δψm were increased and PHB1 expression was down-regulated, in the process of losing their radioresistance. SIGNIFICANCE: Our finding reveled that tune regulation of mitochondrial function is implicated in radioresistance phenotype of cancer cells. Moreover, as our findings indicate, though further studies are required to clarify the precise mechanisms underlying cancer cell radioresistance, radioresistant cells induced by irradiation and cancer stem cells that are originally radioresistant should be considered separately, the radioresistance of CRR cells is reversible.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Tolerância a Radiação/fisiologia , Biomarcadores Farmacológicos , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Membranas Mitocondriais/fisiologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas , Tolerância a Radiação/efeitos da radiação , Raios X/efeitos adversos
12.
Genes (Basel) ; 12(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573330

RESUMO

Mitochondria are very important intracellular organelles because they have various functions. They produce ATP, are involved in cell signaling and cell death, and are a major source of reactive oxygen species (ROS). Mitochondria have their own DNA (mtDNA) and mutation of mtDNA or change the mtDNA copy numbers leads to disease, cancer chemo/radioresistance and aging including longevity. In this review, we discuss the mtDNA mutation, mitochondrial disease, longevity, and importance of mitochondrial dysfunction in cancer first. In the later part, we particularly focus on the role in cancer resistance and the mitochondrial condition such as mtDNA copy number, mitochondrial membrane potential, ROS levels, and ATP production. We suggest a therapeutic strategy employing mitochondrial transplantation (mtTP) for treatment-resistant cancer.


Assuntos
DNA Mitocondrial/fisiologia , Longevidade/fisiologia , Mitocôndrias/fisiologia , Mutação , Neoplasias/terapia , Trifosfato de Adenosina/metabolismo , Transplante de Células/métodos , DNA Mitocondrial/genética , Humanos , Mitocôndrias/transplante , Doenças Mitocondriais/genética , Neoplasias/metabolismo , Neoplasias/patologia , Tolerância a Radiação/genética
13.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361070

RESUMO

In cancer therapy, radioresistance or chemoresistance cells are major problems. We established clinically relevant radioresistant (CRR) cells that can survive over 30 days after 2 Gy/day X-ray exposures. These cells also show resistance to anticancer agents and hydrogen peroxide (H2O2). We have previously demonstrated that all the CRR cells examined had up-regulated miR-7-5p and after miR-7-5p knockdown, they lost radioresistance. However, the mechanism of losing radioresistance remains to be elucidated. Therefore, we investigated the role of miR-7-5p in radioresistance by knockdown of miR-7-5p using CRR cells. As a result, knockdown of miR-7-5p increased reactive oxygen species (ROS), mitochondrial membrane potential, and intracellular Fe2+ amount. Furthermore, miR-7-5p knockdown results in the down-regulation of the iron storage gene expression such as ferritin, up-regulation of the ferroptosis marker ALOX12 gene expression, and increases of Liperfluo amount. H2O2 treatment after ALOX12 overexpression led to the enhancement of intracellular H2O2 amount and lipid peroxidation. By contrast, miR-7-5p knockdown seemed not to be involved in COX-2 and glycolysis signaling but affected the morphology of CRR cells. These results indicate that miR-7-5p control radioresistance via ROS generation that leads to ferroptosis.


Assuntos
Ferroptose , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Bucais/patologia , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , Neoplasias Bucais/genética , Neoplasias Bucais/radioterapia , Transdução de Sinais , Células Tumorais Cultivadas
14.
Pharmacol Biochem Behav ; 209: 173257, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418452

RESUMO

Metoprine increases the content of histamine in brain by inhibiting histamine N-methyltransferase (HMT), a centrally acting histamine degrading enzyme. We present data demonstrating that pretreatment with metoprine attenuates the hyperlocomotive effects of METH in mice using a multi-configuration behavior apparatus designed to monitor four behavioral outcomes [horizontal locomotion, appetitive behavior (food access), and food and water intake]. Metoprine pretreatment itself induced hyperlocomotion in mice challenged with saline during the large part of light phase. The trend was also observed during the following dark phase. This is the first report that metoprine has a long-lasting locomotor stimulating property. Similarly, in a tail suspension test, a single injection of metoprine significantly reduced total time of immobility in mice, consistent with the idea that metoprine possesses motor stimulating properties. Metoprine pretreatment did not affect other aspects of behavior. Metoprine did not affect the appetitive and drinking behavior while exerted an effect on stereotypy. No stereotyped behavior was observed in mice pretreated with vehicle followed by METH, while stereotyped sniffing was observed in mice pretreated with metoprine followed by METH. The metoprine pretreatment attenuated METH-induced hyperlocomotion during the first 2 h of light phase, suggesting that metoprine-induced locomotor stimulating property might be different from that of METH. The hypothalamic content of histamine (but not its brain metabolite) was increased after metoprine or METH administration. Both METH and metoprine reduced dopamine and histamine turnover in the striatum and the nucleus accumbens and the hypothalamus, respectively, and there is a significant metoprine pretreatment x METH challenge interaction in the histamine turnover. It is likely that metoprine may attenuate METH-induced hyperlocomotion via activation of histaminergic neurotransmission. Metoprine also might induce a long-lasting locomotor stimulating effect via a putative mechanism different from that whereby METH induces the locomotor stimulating effect.


Assuntos
Histamina/metabolismo , Locomoção/efeitos dos fármacos , Metanfetamina/farmacologia , Pirimetamina/análogos & derivados , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Inibidores Enzimáticos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Histamina N-Metiltransferase/antagonistas & inibidores , Hipotálamo/metabolismo , Masculino , Metanfetamina/efeitos adversos , Camundongos , Camundongos Endogâmicos ICR , Núcleo Accumbens/metabolismo , Pirimetamina/farmacologia , Comportamento Estereotipado/efeitos dos fármacos
15.
Brain Res ; 1768: 147580, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260963

RESUMO

Kamishoyosan (KSS), a Japanese traditional herbal formula, is used to treat symptoms related to the autonomic nervous system in men and women; it is especially known for improving the symptoms of irritability (e.g., bad temper and persistent anger). Although clinical and ethological studies of KSS have been conducted, its efficacy in reducing irritability remains to be validated. In the present study, male and female ddY-strain mice were isolation-reared for 8 weeks (from the third postnatal week) to induce pathologically aggressive biting behavior (ABB), which was used as an indicator of irritability. The ABB of mice toward metal rods was measured using the Aggressive Response Meter. An intraperitoneal administration of KSS (100 mg/kg) effectively reduced ABB in male and female mice at 2 h after the administration; however, this effect was canceled by prior administration of WAY-100635 [a 5-hydroxytryptoamine (5-HT)-1A receptor antagonist; 0.5 mg/kg] and bicuculline (a type-A gamma-aminobutyric acid receptor antagonist; 1.0 mg/kg). Additionally, tamoxifen, ICI-182780, and G-15 (all estrogen receptor antagonists) inhibited the action of KSS in a dose-dependent manner. Furthermore, gene expression of tryptophan hydroxylase (Tph) 1 and Tph2 were increased and 5-HT immunofluorescence was slightly increased in the dorsal raphe nucleus (DRN) of isolation-reared mice administered with KSS. Collectively, these results indicate that KSS effectively reduces ABB in isolation-reared male and female mice through stimulation of 5-HT production in the DRN. Our findings also suggest that gene expression of estrogen receptor (Esr) 2 increased in the DRN might be associated with the reduction of ABB.


Assuntos
Agressão/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Humor Irritável/efeitos dos fármacos , Animais , Núcleo Dorsal da Rafe/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Expressão Gênica/genética , Japão , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Endogâmicos , RNA Mensageiro/metabolismo , Serotonina/metabolismo , Isolamento Social , Transcriptoma/efeitos dos fármacos , Triptofano Hidroxilase/metabolismo
16.
J Radiat Res ; 62(1): 12-24, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33231252

RESUMO

Transgenic expression in medaka of the Xiphophorus oncogene xmrk, under a pigment cell specific mitf promoter, induces hyperpigmentation and pigment cell tumors. In this study, we crossed the Hd-rR and HNI inbred strains because complete genome information is readily available for molecular and genetic analysis. We prepared an Hd-rR (p53+/-, p53-/-) and Hd-rR HNI hybrid (p53+/-) fish-based xmrk model system to study the progression of pigment cells from hyperpigmentation to malignant tumors on different genetic backgrounds. In all strains examined, most of the initial hyperpigmentation occurred in the posterior region. On the Hd-rR background, mitf:xmrk-induced tumorigenesis was less frequent in p53+/- fish than in p53-/- fish. The incidence of hyperpigmentation was more frequent in Hd-rR/HNI hybrids than in Hd-rR homozygotes; however, the frequency of malignant tumors was low, which suggested the presence of a tumor suppressor in HNI genetic background fish. The effects on tumorigenesis in xmrk-transgenic immature medaka of a single 1.3 Gy irradiation was assessed by quantifying tumor progression over 4 consecutive months. The results demonstrate that irradiation has a different level of suppressive effect on the frequency of hyperpigmentation in purebred Hd-rR compared with hybrids.


Assuntos
Carcinogênese/genética , Carcinogênese/efeitos da radiação , Ciprinodontiformes/genética , Radiação Ionizante , Transgenes , Animais , Animais Geneticamente Modificados , Carcinogênese/patologia , Relação Dose-Resposta à Radiação , Proteínas de Peixes/genética , Raios gama , Hibridização Genética , Hiperpigmentação/genética , Receptores Proteína Tirosina Quinases/genética , Proteína Supressora de Tumor p53/genética
17.
Technol Cancer Res Treat ; 19: 1533033820980077, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33334271

RESUMO

BACKGROUND: Radiation therapy is a highly cost-effective treatment for cancer, but the existence of radio-resistant cells remains the most critical obstacle in radiotherapy. We have been established clinically relevant radioresistant (CRR) cell lines by exposure to a stepwise increase of fractionated X-rays. We are trying to overcome the radio-resistance by analyzing the properties of these cells. In this study, we tried to evaluate the effects of hydrogen peroxide (H2O2) on the CRR cells because this can evaluate the efficacy of Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas (KORTUC) that treats H2O2 before irradiation. We also established H2O2-resistant cells to compare the radiation and H2O2 resistant phenotype. MATERIALS AND METHODS: We used human cancer cell lines derived from hepatoblastoma (HepG2), oral squamous cell carcinoma (SAS), and cervical cancer (HeLa). We established HepG2, SAS, and HeLa CRR cells and HepG2, SAS, and HeLa H2O2-resistant cells. To evaluate their sensitivity to radiation or H2O2, high-density survival assay, or WST assay was performed. CellROXTM was used to detect intracellular Reactive Oxygen Species (ROS). RESULTS: CRR cells were resistant to H2O2-induced cell death but H2O2-resistant cells were not resistant to irradiation. This phenotype of CRR cells was irreversible. The intracellular ROS was increased in parental cells after H2O2 treatment for 3 h, but in CRR cells, no significant increase was observed. CONCLUSION: Fractionated X-ray exposure induces H2O2 resistance in CRR cells. Therefore, it is necessary to carry out cancer therapy such as KORTUC with the presence of these resistant cells in mind, and as the next stage, it would be necessary to investigate the appearance rate of these cells immediately and take countermeasures.


Assuntos
Peróxido de Hidrogênio/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Espécies Reativas de Oxigênio/metabolismo , Raios X
18.
Free Radic Biol Med ; 161: 60-70, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017631

RESUMO

Most anti-cancer agents and radiotherapy exert their therapeutic effects via the production of free radicals. Ferroptosis is a recently described cell death process that is accompanied by iron-dependent lipid peroxidation. Hydrogen peroxide (H2O2) has been reported to induce cell death. However, it remains controversial whether H2O2-induced cell death is ferroptosis. In the present study, we aimed to elucidate the involvement of mitochondria in H2O2-induced ferroptosis and examined the molecules that regulate ferroptosis. We found that one mechanism underlying H2O2-induced cell death is ferroptosis, which occurs soon after H2O2 treatment (within 3 h after H2O2 treatment). We also investigated the involvement of mitochondria in H2O2-induced ferroptosis using mitochondrial DNA-depleted ρ0 cells because ρ0 cells produce more lipid peroxidation, hydroxyl radicals (•OH), and are more sensitive to H2O2 treatment. We found that ρ0 cells contain high Fe2+ levels that lead to •OH production by H2O2. Further, we observed that aquaporin (AQP) 3, 5, and 8 bind nicotinamide-adenine dinucleotide phosphate oxidase 2 and regulate the permeability of extracellular H2O2, thereby contributing to ferroptosis. Additionally, the role of mitochondria in ferroptosis was investigated using mitochondrial transfer in ρ0 cells. When mitochondria were transferred into ρ0 cells, the cells exhibited no sensitivity to H2O2-induced cytotoxicity because of decreased Fe2+ levels. Moreover, mitochondrial transfer upregulated the mitochondrial quality control protein prohibitin 2 (PHB2), which contributes to reduced AQP expression. Our findings also revealed the involvement of AQP and PHB2 in ferroptosis. Our results indicate that H2O2 treatment enhances AQP expression, Fe2+ level, and lipid peroxidation, and decrease mitochondrial function by downregulating PHB2, and thus, is a promising modality for effective cancer treatment.


Assuntos
Aquaporinas , Ferroptose , Mitocôndrias , Aquaporinas/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Permeabilidade , Proibitinas
19.
Mol Biol Rep ; 47(6): 4401-4411, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32394308

RESUMO

Mitochondrial dysfunction is known to contribute to cancer initiation, progression, and chemo-and radio-resistance. However, the precise role of mitochondria in cancer is controversial. Hence, here we tried to further clarify the role of mitochondria in cancer by transferring healthy mitochondria to cancer cells, and also to cells with depleted mitochondrial DNA (ρ0). Healthy mitochondria were isolated from WI-38 cells and were transferred to HeLa, SAS, HeLa ρ0, and SAS ρ0 cells. Then, cell proliferation was verified. In addition, the cells were treated by different concentrations of cisplatin and assessed for apoptosis induction and quantifying the mRNA expression of apoptosis-related genes. Results revealed that incubation of the HeLa, SAS and HeLa ρ0 cells with 5 µg/ml of the isolated mitochondria for 24 h significantly (p < 0.001) increased cell proliferation compared to non-treated controls. Interestingly, the mitochondria transfer rescued the ρ0 cells and made them capable of growing under conventional culture medium. However, the number of apoptotic cells was significantly higher in the HeLa ρ0 cells that received the mitochondria (HeLa-Fibro-Mit) compared to the HeLa ρ0. Furthermore, the expression level of BCL-2 anti-apoptotic gene was down-regulated in both HeLa-Fibro-Mit and SAS-Fibro-Mit cell lines while the expression levels of the BAX, caspase8, caspase9, and AIF pro-apoptotic genes were upregulated. Our findings indicated that although the response of cancer cells to the mitochondria transfer is cancer-type dependent, but the introduction of normal exogenous mitochondria to some cancer cells might be considered as a potential novel therapeutic strategy.


Assuntos
Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cisplatino/farmacologia , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
20.
Biochem Biophys Res Commun ; 518(4): 712-718, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31472959

RESUMO

MicroRNA (miRNA) is a non-coding RNA involved in regulating both cancer gene promotion and suppression. We investigated the role of miRNA in inducing radiation resistance in cancer cell lines using clinically relevant radioresistant (CRR) cells. Analysis using miRNA arrays and qPCR revealed that miR-7-5p is highly expressed in all examined CRR cells. Additionally, CRR cells lose their radioresistance when daily irradiation is interrupted for over 6 months. MiR-7-5p expression is reduced in these cells, and treating CRR cells with a miR-7-5p inhibitor leads to a loss of resistance to irradiation. Conversely, overexpression of miR-7-5p in CRR cells using a miR-7-5p mimic shows further resistance to radiation. Overexpression of miR-7-5p in parent cells also results in resistance to radiation. These results indicate that miR-7-5p may control radioresistance in various cancer cells at the clinically relevant dose of irradiation. Furthermore, miR-7-5p downregulates mitoferrin and reduces Fe2+, which influences ferroptosis. Our findings have great potential not only for examining radiation resistance prior to treatment but also for providing new therapeutic agents for treatment-resistant cancers.


Assuntos
Espaço Intracelular/metabolismo , Ferro/metabolismo , MicroRNAs/genética , Tolerância a Radiação/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HeLa , Células Hep G2 , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Tolerância a Radiação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...